Explosion detected that occurred in the galaxy 3.6 billion light years away

A group of Australian researchers reveals that they have identified the fast cosmic waves related to an explosion that occurred in a distant galaxy 3.6 billion light-years away. This is a discovery that could be of fundamental importance to really understand the mysterious fast radio flashes.

The identification was carried out thanks to the observations of the Australian Square Kilometer Array Pathfinder (ASKAP) radio telescope of the Commonwealth Scientific and Industrial Research Organization (CSIRO), located in the region of Western Australia. This is a result that had long been expected in the astronomical community, a result that then resulted in a study published in Science.

Fast radio flashes are energy emissions caused by a cosmic explosion and are very difficult to intercept because they are emitted on long waves at the end of the electromagnetic spectrum. They are also very powerful so that they can develop in the same millisecond the same amount of energy that the Sun radiates in 10,000 years.

The first FRB was detected in 2007 and since then 85 have been identified, a number which however has not proved sufficient for a total understanding of the phenomenon. The researchers this time used a new method based on new software capable of calculating a billion measurements per second, which made it possible to “capture” these very fast flashes.

The new fast radio flash has been called FRB 180924 and is the first for which the position has been identified in a relatively precise manner. The lightning started from the galaxy Des J214425.25−405400.81. This galaxy was then photographed with the Very Large Telescope of the Southern European Observatory and its distance was measured with the Keck telescope of Hawaii.

Various hypotheses have been made regarding the explosion that these fast flashes generate and one of them sees the formation of a magnetar, a neutron star with a very pronounced magnetic field that is formed by the death of a very massive star. However, this discovery also reinforces the idea that there are two types of FRB, some repeated and others not, which may have completely different origins.

Those that are not repeated are much more difficult to identify but in this case, the researchers were able to identify with extreme precision the position of FRB 180924 locating it at 4000 parsecs (each parsec corresponds to about 3.26 light-years) from the galactic center of a galaxy distant from us 3.6 billion years ago.

Sean Cox

I am a Physics professor at Florida A&M University and an amateur astronomer with a keen interest in not just my own areas of specialization, but also biology, robotics and computer science (I am also an amateur C++ programmer and Python developer). While my current responsibilities do not allow me to spend a whole lot of time writing about science research, I thoroughly enjoy doing so when I get the chance, and started NNTP News to engage in that hobby and also to try to get at least a few other people interested in the wonderful world of science.

Phone: 561-853-1679
Email: [email protected]
Sean Cox